Powered by
Share this page on
Article provided by Wikipedia

Ames Laboratory
""Ames Lab logo.jpg
Established 1947; 71 years ago (1947)
Research type Unclassified
"Budget $50 million
"Director Adam Schwartz
"Staff 308
"Students 198
Location "Ames, IA
"Coordinates: 42°01′50″N 93°38′54″W / 42.0305°N 93.6482°W / 42.0305; -93.6482
Operating agency
"Iowa State University
Website Ames Laboratory

Ames Laboratory is a "United States Department of Energy "national laboratory located in "Ames, Iowa and affiliated with "Iowa State University. This is a top level national laboratory for new research in various domains concerning national security and resource management. The Laboratory conducts research into various areas of national concern, including the "synthesis and study of new materials, energy resources, "high-speed computer design, and "environmental cleanup and "restoration. It is located on the campus of Iowa State University.

In January 2013 the Department of Energy announced the establishment of the Critical Materials Institute (CMI) at Ames Laboratory, with a mission to develop solutions to the domestic shortages of "rare-earth metals and other materials critical for U.S. energy security.




In 1942, "Frank Spedding of "Iowa State College, an expert in the chemistry of "rare-earth elements, agreed to set up and direct a chemical research and development program, since called the "Ames Project, to accompany the "Manhattan Project's existing "physics program. Its purpose was to produce high purity "uranium from uranium "ores. Harley Wilhelm developed new methods for both reducing and casting uranium metal, making it possible to cast large "ingots of the metal and reduce production costs by as much as twentyfold. About one-third, or around 2 tons, of the uranium used in the first self-sustaining "nuclear reaction at the "University of Chicago was provided through these procedures, now known as the "Ames Process. The Ames Project produced more than 2 million pounds (1,000 tons) of uranium for the Manhattan Project until industry took over the process in 1945.

The Ames Project received the "Army-Navy ‘E’ Award for Excellence in Production on October 12, 1945, signifying two-and-a-half years of excellence in industrial production of metallic uranium as a vital war material. "Iowa State University is unique among educational institutions to have received this award for outstanding service, an honor normally given to industry. Other key accomplishments related to the project:

Ames Laboratory was formally established in 1947 by the "United States Atomic Energy Commission as a result of the Ames Project's success.


During the 1950s the Lab’s growing reputation for its work with rare-earth metals rapidly increased its workload. As the country explored the uses of "nuclear power, lab scientists studied "nuclear fuels and structural materials for "nuclear reactors. Processes developed at Ames Laboratory resulted in the production of the purest rare-earth metals in the world while at the same time reducing the price of the metals as much as 1,000 percent. In most cases, Lab facilities served as models for large-scale production of rare-earth metals. Lab scientists took advantage of Iowa State University's "synchrotron to pursue medium-energy physics research. Analytical chemistry efforts expanded to keep up with the need to analyze new materials.

Other key accomplishments from the 1950s:


During the 1960s the Lab reached peak employment as its scientists continued exploring new materials. As part of that effort, the Lab built a 5-megawatt "heavy water reactor for "neutron diffraction studies and additional "isotope separation research. The "United States Atomic Energy Commission established the Rare-Earth Information Center at Ames Lab to provide the scientific and technical communities with information about rare-earth metals and their compounds.

Other key accomplishments from the 1960s:


During the 1970s, as the "United States Atomic Energy Commission evolved into the "United States Department of Energy, efforts diversified as some research programs closed and new ones opened. Federal officials consolidated reactor facilities, leading to the closure of the research reactor. Ames Laboratory responded by putting new emphasis on "applied mathematics, "solar power, "fossil fuels and pollution control. Innovative analytical techniques were developed to provide precise information from increasingly small samples. Foremost among them was "inductively coupled plasma-atomic emission "spectroscopy, which could rapidly and simultaneously detect up to 40 different trace metals from a small sample.

Other key accomplishments from the 1970s:


In the 1980s research at Ames Laboratory evolved to meet local and national energy needs. "Fossil energy research focused on ways to burn "coal cleaner. New technologies were developed to clean up "nuclear waste sites. High-performance computing research augmented the "applied mathematics and "solid-state physics programs. Ames Laboratory became a national leader in the fields of "superconductivity and "nondestructive evaluation. In addition, DOE established the Materials Preparation Center[1] to provide public access to the development of new materials.

Other key accomplishments from the 1980s:


Encouraged by "United States Department of Energy, in the 1990s Ames Laboratory continued its efforts to transfer basic research findings to industry for the development of new materials, products and processes. The Scalable Computing Laboratory[2] was established to find ways of making "parallel computing accessible and cost-effective for the scientific community. Researchers discovered the first non-carbon example of "buckyballs, a new material important in the field of "microelectronics. Scientists developed a "DNA sequencer that was 24 times faster than other devices, and a technique that assessed the nature of DNA damage by chemical pollutants.

Other key accomplishment of the 1990s:

• Discovery of intermetallic compounds that are ductile at room temperature, and which could be used to produce practical materials from coatings that are highly resistant to corrosion and strong at high temperatures to flexible superconducting wires and powerful magnets. • Research on the photophysics of luminescent organic thin films and organic light-emitting diodes resulted in a novel integrated oxygen sensor and a new sensor company. • A biosensor technology that helps to determine an individual’s risk of getting cancer from chemical pollutants. • A capillary electrophoresis unit that can analyze multiple chemical samples simultaneously. This unit has applications in the pharmaceutical, genetics, medical, and forensics fields. This technology has been the basis of a spin-off business. • The design and demonstration of photonic band gap crystals, a geometrical arrangement of dielectric materials that allows light to pass except when the frequency falls within a forbidden range. These materials would make it easier to develop numerous practical devices, including optical lasers, optical computers, and solar cells.


2011 and beyond[edit]

Ames Laboratory directors[edit]

# Director Start of term End of term
1 "Frank Spedding 1947 1968
2 Robert Hansen 1968 1988
3 Thomas Barton 1988 2007
4 Alexander King 2008 2013
5 Adam Schwartz 2014

Notable alumni and faculty[edit]

"Frank Spedding (B.S. 1925, M.S. 1926) (deceased), directed the chemistry phase of the Manhattan Project in World War II, which led to the world's first controlled nuclear reaction. He was Iowa State's second member of the "National Academy of Sciences and the first director of the Ames Laboratory. Dr. Spedding won the Langmuir Award in 1933, Only Oscar K. Rice and "Linus Pauling preceded him in this achievement. The award is now called the Award in Pure Chemistry of the "American Chemical Society. He is the first to bear the title Distinguished Professor of Sciences and Humanities at Iowa State (1957). Further awards include: William H. Nichols Award of the New York section of the American Chemical Society (1952); the James Douglas Gold Medal from the American Institute of Mining, Metallurgical, and Petroleum Engineers (1961) for achievements in nonferrous metallurgy; and the Francis J. Clamer Award from the Franklin Institute (1969) for achievements in metallurgy.

Harley Wilhelm (Ph.D. 1931) (deceased), developed the most efficient process to produce uranium metal for the Manhattan Project, the "Ames Process, a process still used today.

"Velmer A. Fassel (Ph.D. 1947)(deceased), internationally known for developing an analytical process, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), used for chemical analysis in almost every research laboratory in the world; former deputy director of the Ames Laboratory.

Karl A. Gschneidner, Jr. (B.S. 1952, Ph.D 1957) (deceased) elected Fellow of the "National Academy of Engineering in 2007, Gschneidner is acknowledged as one of the world’s foremost authorities in the physical metallurgy and thermal and electrical behaviors of rare-earth materials. Additionally Gschneidner is a Fellow of the Minerals, Metals, and Materials Society, Fellow of the American Society for Materials International, and Fellow of the "American Physical Society.

James Renier (Ph.D. 1955), chairman and chief executive officer of Honeywell Inc. (1988–93).

Darleane C. Hoffman (Ph.D. 1951), a 1997 recipient of the "National Medal of Science, is one of the researchers who confirmed the existence of element 106, seaborgium.

John Weaver (Ph.D. 1973), named Scientist of the Year for 1997 by R&D Magazine. Weaver is currently head of the Department of Materials Science and Engineering at the University of Illinois, Urbana-Champaign.

"James Halligan (B.S. 1962, M.S. 1965, Ph.D. 1967), president of "Oklahoma State University (1994–2002).

"Allan Mackintosh, noted expert on "rare-earth metals and President of the "European Physical Society.

James W. Mitchell (Ph.D. 1970), named Iowa State University's first "George Washington Carver Professor in 1994. He is also the winner of two R&D 100 Awards and the prestigious Percy L. Julian Research Award given by the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers for innovative industrial research. Mitchell is vice president of the Materials Research Laboratory at Bell Laboratories, Lucent Technologies.

"John Corbett, chemistry and Ames Laboratory, member of the "National Academy of Sciences, created the first non-"carbon example of "buckyballs; discovered more than 1,000 new materials.

"Kai-Ming Ho, Che-Ting Chan, and "Costas Soukoulis, physics and Ames Laboratory, were the first to design and demonstrate the existence of photonic band gap crystals, a discovery that led to the development of the rapidly expanding field of "photonic crystals. Photonic crystals are expected to have revolutionary applications in optical communication and other areas of light technology. Soukoulis is a recipient of the "Descartes Prize for Excellence in Scientific Collaborative Research, the "European Union’s highest honor in the field of science.

"Dan Shechtman, materials science and engineering and Ames Laboratory, winner of the 2011 "Nobel Prize in Chemistry.

Pat Thiel, chemistry and Ames Laboratory, received one of the first 100 "National Science Foundation Women in Science and Engineering Awards (presented in 1991). Also received the AVS Medard W. Welch Award, which recognizes outstanding research in the fields of materials, interfaces and processing (presented in 2014).

"Edward Yeung, chemistry and Ames Lab, first person to quantitatively analyze the chemical contents of a single human red blood cell, using a device that he designed and built; the development could lead to improved detection of AIDS, cancer and genetic diseases such as Alzheimer's, muscular dystrophy and Down's syndrome. Yeung has won four R&D 100 Awards and an Editor's Choice award from R&D Magazine for this pioneering work. He was the 2002 recipient of the "American Chemical Society Award in Chromatography for his research in chemical separations.[4]

Klaus Rudenberg, physics and Ames Laboratory, 2001 recipient of the "American Chemical Society Award in Theoretical Chemistry for his innovative research in the field of "theoretical chemistry.

Paul Canfield, Sergey Bud'ko, "Costas Soukoulis, physics and Ames Laboratory, named to Thomas Reuters' World's Most Influential Scientific Minds 2014. Award recognizes the greatest number of highly cited papers (among the top 1 percent for their subject field and year of publication between 2002 and 2012).

"Costas Soukoulis, physics and Ames Laboratory, received the Max Born Award from the Optical Society of America in 2014. Award honors a scientist who has made outstanding contributions to the scientific field of physical optics.


  1. ^ "Materials Preparation Center". Ames Lab. Retrieved July 17, 2013. 
  2. ^ "Main Page". Scalable Computing Laboratory. Archived from the original on July 2, 2013. Retrieved July 17, 2013. 
  3. ^ "HINT". Brigham Young University. Retrieved July 17, 2013. 
  4. ^ "ACS Award in Chromatography". American Chemical Society. Retrieved July 17, 2013. 

External links[edit]

) ) WikipediaAudio is not affiliated with Wikipedia or the WikiMedia Foundation.