Article provided by Wikipedia

The magnetic moment is a "quantity that represents the magnetic strength and orientation of a "magnet or other object that produces a "magnetic field. Examples of objects that have magnetic moments include: loops of "electric current (such as "electromagnets), permanent magnets, elementary particles (such as "electrons), various "molecules, and many astronomical objects (such as many "planets, some "moons, "stars, etc).

More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment the component of the magnetic moment that can be represented by an equivalent "magnetic dipole: a magnetic north and south pole separated by a very small distance. The magnetic dipole component is sufficient for small enough magnets or for large enough distances. Higher order terms (such as the "magnetic quadrupole moment) may be needed in addition to the dipole moment for extended objects.

The magnetic dipole moment of an object is readily defined in terms of the torque that object experiences in a given magnetic field. The same applied magnetic field creates larger torques on objects with larger magnetic moments. The strength (and direction) of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. The magnetic moment may be considered, therefore, to be a "vector. The direction of the magnetic moment points from the south to north pole of the magnet (inside the magnet).

The magnetic field of a magnetic dipole is proportional to its magnetic dipole moment. The dipole component of an object's magnetic field is symmetric about the direction of its magnetic dipole moment, and decreases as the inverse cube of the distance from the object.

## Definition

The magnetic moment is defined as a "vector relating the aligning "torque on the object from an externally applied "magnetic field to the field vector itself. The relationship is given by:[1]

${\displaystyle {\boldsymbol {\tau }}=\mathbf {m} \times \mathbf {B} }$

where τ is the torque acting on the dipole, B is the external magnetic field, and m is the magnetic moment.

This definition is based on how one would measure the magnetic moment, in principle, of an unknown sample if possible.This definition finds for macroscopic current loops that the magnitude of the magnetic dipole moment is current times area of the loop.

The more general definition, which applies to macroscopic current loops as well as to quantum systems, is that the magnetic dipole moment of a system is the negative gradient of its intrinsic energy, Uint, with respect to external magnetic field:

${\displaystyle \mathbf {m} =-{\hat {\mathbf {x}}}{\frac {\partial U_{int}}{\partial B_{x}}}-{\hat {\mathbf {y}}}{\frac {\partial U_{int}}{\partial B_{y}}}-{\hat {\mathbf {z}}}{\frac {\partial U_{int}}{\partial B_{z}}}}$

Generically, the intrinsic energy includes the self-field energy, ${\displaystyle \int dV{\frac {B_{dip}^{2}(\mathbf {r} )}{2\mu _{0}}}}$, of the system, where the integral is over all space, plus the energy of the internal workings of the system. For example, for a hydrogen atom in a 2p state in an external field, the self-field energy is negligible, so the internal energy is essentially the eigenenergy of the 2p state, which includes Coulomb potential energy and the kinetic energy of the electron. The interaction-field energy between dipole and external fields, ${\displaystyle \int dV{\frac {\mathbf {B} (\mathbf {r} )\cdot \mathbf {B} _{dip}(\mathbf {r} )}{\mu _{0}}}}$, is not part of the internal energy.

## Units

The unit for magnetic moment in terms of the "International System of Units (SI) "base units is ${\displaystyle A\cdot m^{2}}$, where ${\displaystyle A}$ is the "ampere (the SI unit of current) and m is the "meter (the SI unit of distance). This has equivalents in other units used in SI including:[2][3]

${\displaystyle A\cdot m^{2}={\frac {N\cdot m}{T}}={\frac {J}{T}},}$

where ${\displaystyle N}$ is the "newton (the SI unit of force), and ${\displaystyle J}$ is the "joule (the SI unit of "energy).

In the "CGS system, there are several different sets of electromagnetism units, of which the main ones are "ESU, "Gaussian, and "EMU. Among these, there are two alternative (non-equivalent) units of magnetic dipole moment:

${\displaystyle 1statA\cdot cm^{2}=3.33564095\times 10^{-14}A\cdot m^{2}}$ (ESU)
${\displaystyle 1{\frac {erg}{G}}=1abA\cdot cm^{2}=10^{-3}A\cdot m^{2}}$ (Gaussian and EMU),

where statA is "statamperes, cm is "centimeters, erg is "ergs, G is "gauss and abA is "abamperes (1 abampere = 10 "amperes). The ratio of these two non-equivalent CGS units (EMU/ESU) is equal to the "speed of light in free space, expressed in "cm·"s−1.

All formulae in this article are correct in "SI units; they may need to be changed for use in other unit systems. For example, in SI units, a loop of current with current I and area A has magnetic moment IA (see below), but in "Gaussian units the magnetic moment is IA/"c.

Other units for measuring the magnetic dipole moment include the "bohr magneton and the "nuclear magneton.

## Two models of the cause of the magnetic moment

The preferred classical explanation of a magnetic moment has changed over time. Before the 1930s, textbooks explained the moment using hypothetical magnetic point charges. Since then, most have defined it in terms of Ampèrian currents.[4] In magnetic materials, the cause of the magnetic moment are the "spin and orbital angular momentum states of the electrons, and varies depending on whether atoms in one region are aligned with atoms in another.

### Magnetic pole model

""
""
An electrostatic analog for a magnetic moment: two opposing charges separated by a finite distance.

The sources of magnetic moments in materials can be represented by poles in analogy to "electrostatics. In this model, a small magnet is modeled by a pair of magnetic poles of equal magnitude but opposite "polarity. Each pole is the source of magnetic force which weakens with distance. Since "magnetic poles always come in pairs, their forces partially cancel each other because while one pole pulls, the other repels. This cancellation is greatest when the poles are close to each other i.e. when the bar magnet is short. The magnetic force produced by a bar magnet, at a given point in space, therefore depends on two factors: the strength p of its poles (magnetic pole strength), and the vector l separating them. The magnetic dipole moment m is related to the fictitious poles as[4]

${\displaystyle \mathbf {m} =p{\boldsymbol {l}}.}$

It points in the direction from South to North pole. The analogy with electric dipoles should not be taken too far because magnetic dipoles are associated with "angular momentum (see "Magnetic moment and angular momentum). Nevertheless, magnetic poles are very useful for "magnetostatic calculations, particularly in applications to "ferromagnets.[4] Practitioners using the magnetic pole approach generally represent the "magnetic field by the "irrotational field H, in analogy to the "electric field E.

### Amperian loop model

""
""
The Amperian loop model: A current loop (ring) that goes into the page at the x and comes out at the dot produces a B-field (lines). The north pole is to the right and the south to the left.

After Ørsted discovered that electric currents produce a magnetic field and Ampere discovered that electric currents attracted and repelled each other similar to magnets, it was natural to hypothesize that all magnetic fields are due to electric current loops. In this model developed by Ampere, the elementary magnetic dipole that makes up all magnets is a sufficiently small Amperian loop of current I. The dipole moment of this loop is

${\displaystyle \mathbf {m} =I{\boldsymbol {S}},}$

where S is the area of the loop. The direction of the magnetic moment is in a direction normal to the area enclosed by the current consistent with the direction of the current using the right hand rule.

#### Localized current distributions

""
""
Moment m of a planar current having magnitude I and enclosing an area S

The magnetic dipole moment can be calculated for a localized (does not extend to infinity) current distribution assuming that we know all of the currents involved. Conventionally, the derivation starts from a "multipole expansion of the "vector potential. This leads to the definition of the magnetic dipole moment as:

${\displaystyle \mathbf {m} ={\tfrac {1}{2}}\iiint _{V}\mathbf {r} \times \mathbf {j} \,{\rm {d}}V,}$

where × is the "vector cross product, r is the position vector, and j is the "electric current density and the integral is a volume integral.[5] When the current density in the integral is replaced by a loop of current I in a plane enclosing an area S then the volume integral becomes a line integral and the resulting dipole moment becomes

${\displaystyle \mathbf {m} =I\mathbf {S} ,}$

which is how the magnetic dipole moment for an Amperian loop is derived.

Practitioners using the current loop model generally represent the magnetic field by the "solenoidal field B, analogous to the electrostatic field D.

#### Magnetic moment of a solenoid

""
""
Image of a solenoid

A generalization of the above current loop is a coil, or "solenoid. Its moment is the vector sum of the moments of individual turns. If the solenoid has N identical turns (single-layer winding) and vector area S,

${\displaystyle \mathbf {m} =NI\mathbf {S} .}$

### Quantum mechanical model

When calculating the magnetic moments of materials or molecules on the microscopic level it is often convenient to use a third model for the magnetic moment that exploits the linear relationship between the "angular momentum and the magnetic moment of a particle. While this relation is straight forward to develop for macroscopic currents using the amperian loop model (see below), neither the magnetic pole model nor the amperian loop model truly represents what is occurring at the atomic and molecular levels. At that level "quantum mechanics must be used. Fortunately, the linear relationship between the magnetic dipole moment of a particle and its angular momentum still holds; although it is different for each particle. Further, care must be used to distinguish between the intrinsic angular momentum (or "spin) of the particle and the particle's orbital angular momentum. See below for more details.

## Magnetic moment and angular momentum

The magnetic moment has a close connection with "angular momentum called the gyromagnetic effect. This effect is expressed on a "macroscopic scale in the "Einstein-de Haas effect, or "rotation by magnetization," and its inverse, the "Barnett effect, or "magnetization by rotation."[1] In particular, when a magnetic moment is subject to a "torque in a magnetic field that tends to align it with the applied magnetic field, the moment "precesses (rotates about the axis of the applied field). This is a consequence of the concomitance of magnetic moment and angular momentum, that in case of charged massive particles corresponds to the concomitance of charge and mass in a particle.

On the macroscopic level the relationship between the magnetic moment and the angular momentum can straight forwardly be shown using the amperian loop model as follows: The "angular momentum of a moving charged particle is defined as:

${\displaystyle {\boldsymbol {L}}=\mathbf {r} \times \mathbf {p} =\mu \mathbf {r} \times \mathbf {v} ,}$

where μ is the mass of the particle and v is the particles "velocity. For an extended particle

${\displaystyle {\boldsymbol {L}}=\iiint _{V}\mathbf {r} \times (\rho \mathbf {v} )\,{\rm {d}}V,}$

where ρ is the "mass density. By convention the direction of the cross product is given by the "right hand grip rule. [6]

This is similar to the magnetic moment of a moving charged particle distributed in space:

${\displaystyle \mathbf {m} ={\tfrac {1}{2}}\iiint _{V}\mathbf {r} \times \mathbf {j} \,{\rm {d}}V,}$

where ${\displaystyle \mathbf {j} =\rho _{Q}\mathbf {v} }$ and ${\displaystyle \rho _{Q}}$ is the "charge density of the extended charge particle.

Comparing the two equations results in:

${\displaystyle \mathbf {m} ={\frac {e}{2\mu }}\mathbf {L} ,}$

where ${\displaystyle e}$ is the charge of the particle and ${\displaystyle \mu }$ is the mass of the particle. A variation of this equation is particularly useful for calculating the magnetic moments of atoms and molecules where "quantum mechanics must be used. This variation accounts for the fact that "angular momentum is quantized and for the fact the intrinsic angular momentum of a particle (technically known as its "spin) needs an additional multiplicative factor. See "electron magnetic moment and "Bohr magneton for more details.

Viewing a magnetic dipole as a rotating charged particle brings out the close connection between magnetic moment and angular momentum. Both the magnetic moment and the angular momentum increase with the rate of rotation. The ratio of the two is called the "gyromagnetic ratio and is simply the half of the "charge-to-mass ratio.[7] [8]

For a spinning charged solid with a uniform charge density to mass density ratio, the gyromagnetic ratio is equal to half the "charge-to-mass ratio. This implies that a more massive assembly of charges spinning with the same angular momentum will have a "proportionately weaker magnetic moment, compared to its lighter counterpart. Even though atomic particles cannot be accurately described as spinning charge distributions of uniform charge-to-mass ratio, this general trend can be observed in the atomic world, where the intrinsic angular momentum ("spin) of each type of particle is a constant: a small "half-integer times the reduced "Planck constant ħ. This is the basis for defining the magnetic moment units of "Bohr magneton (assuming "charge-to-mass ratio of the "electron) and "nuclear magneton (assuming "charge-to-mass ratio of the "proton).

## Effects of an external magnetic field on a magnetic moment

### Force on a moment

A magnetic moment in an externally produced magnetic field has a potential energy U:

${\displaystyle U=-\mathbf {m} \cdot \mathbf {B} }$

In a case when the external magnetic field is non-uniform, there will be a force, proportional to the magnetic field "gradient, acting on the magnetic moment itself. There has been some discussion on how to calculate the force acting on a magnetic dipole. There are two expressions for the force acting on a magnetic dipole, depending on whether the "model used for the dipole is a current loop or two monopoles (analogous to the electric dipole).[9] The force obtained in the case of a current loop model is

${\displaystyle \mathbf {F} _{\text{loop}}=\nabla \left(\mathbf {m} \cdot \mathbf {B} \right)}$

In the case of a pair of monopoles being used (i.e. electric dipole model)

${\displaystyle \mathbf {F} _{\text{dipole}}=\left(\mathbf {m} \cdot \nabla \right)\mathbf {B} }$

and one can be put in terms of the other via the relation

${\displaystyle \mathbf {F} _{\text{loop}}=\mathbf {F} _{\text{dipole}}+\mathbf {m} \times \left(\nabla \times \mathbf {B} \right)}$

In all these expressions m is the dipole and B is the magnetic field at its position. Note that if there are no currents or time-varying electrical fields ∇ × B = 0 and the two expressions agree.

An electron, nucleus, or atom placed in a uniform magnetic field will precess with a frequency known as the "Larmor frequency. See "Resonance.

## Magnetic dipoles

A magnetic dipole is the limit of either a current loop or a pair of poles as the dimensions of the source are reduced to zero while keeping the moment constant. As long as these limits only apply to fields far from the sources, they are equivalent. However, the two models give different predictions for the internal field (see below).

### External magnetic field produced by a magnetic dipole moment

""
""
Magnetic field lines around a "magnetostatic dipole". The magnetic dipole itself is located in the center of the figure, seen from the side, and pointing upward.

Any system possessing a net magnetic dipole moment m will produce a "dipolar magnetic field (described below) in the space surrounding the system. While the net magnetic field produced by the system can also have higher-order "multipole components, those will drop off with distance more rapidly, so that only the dipolar component will dominate the magnetic field of the system at distances far away from it.

In three dimensions, the "vector potential of the magnetic field produced by magnetic moment m is

${\displaystyle \mathbf {A} (\mathbf {r} )={\frac {\mu _{0}}{4\pi }}{\frac {\mathbf {m} \times \mathbf {r} }{|\mathbf {r} |^{3}}}}$

and "magnetic flux density is

${\displaystyle \mathbf {B} ({\mathbf {r} })=\nabla \times {\mathbf {A} }={\frac {\mu _{0}}{4\pi }}\left({\frac {3\mathbf {r} (\mathbf {m} \cdot \mathbf {r} )}{|\mathbf {r} |^{5}}}-{\frac {\mathbf {m} }{|\mathbf {r} |^{3}}}\right).}$

Alternatively one can obtain the "scalar potential of magnetic field from the magnetic pole perspective,

${\displaystyle \psi (\mathbf {r} )={\frac {\mathbf {m} \cdot \mathbf {r} }{4\pi |\mathbf {r} |^{3}}},}$

and hence "magnetic field strength is

${\displaystyle {\mathbf {H} }({\mathbf {r} })=-\nabla \psi ={\frac {1}{4\pi }}\left({\frac {3\mathbf {r} (\mathbf {m} \cdot \mathbf {r} )}{|\mathbf {r} |^{5}}}-{\frac {\mathbf {m} }{|\mathbf {r} |^{3}}}\right).}$

The magnetic field of an ideal magnetic dipole is depicted on the right.

In two dimensions, the above expressions need to be rewritten[10]. The "vector potential of magnetic field is then

${\displaystyle \mathbf {A} (\mathbf {r} )={\frac {\mu _{0}}{2\pi }}{\frac {\mathbf {m} \times \mathbf {r} }{|\mathbf {r} |^{2}}}}$

and "magnetic flux density is

${\displaystyle \mathbf {B} ({\mathbf {r} })=\nabla \times {\mathbf {A} }={\frac {\mu _{0}}{2\pi }}\left({\frac {2\mathbf {r} (\mathbf {m} \cdot \mathbf {r} )}{|\mathbf {r} |^{4}}}-{\frac {\mathbf {m} }{|\mathbf {r} |^{2}}}\right).}$

The scalar potential of magnetic field is

${\displaystyle \psi (\mathbf {r} )={\frac {\mathbf {m} \cdot \mathbf {r} }{2\pi |\mathbf {r} |^{2}}},}$

and hence "magnetic field strength is

${\displaystyle {\mathbf {H} }({\mathbf {r} })=-\nabla \psi ={\frac {1}{2\pi }}\left({\frac {2\mathbf {r} (\mathbf {m} \cdot \mathbf {r} )}{|\mathbf {r} |^{4}}}-{\frac {\mathbf {m} }{|\mathbf {r} |^{2}}}\right).}$

### Internal magnetic field of a dipole

""
""
The magnetic field of a current loop

The two models for a dipole (current loop and magnetic poles) give the same predictions for the magnetic field far from the source. However, inside the source region, they give different predictions. The magnetic field between poles (see figure for "Magnetic pole definition) is in the opposite direction to the magnetic moment (which points from the negative charge to the positive charge), while inside a current loop it is in the same direction (see the figure to the right). The limits of these fields must also be different as the sources shrink to zero size. This distinction only matters if the dipole limit is used to calculate fields inside a magnetic material.[4]

If a magnetic dipole is formed by making a current loop smaller and smaller, but keeping the product of current and area constant, the limiting field is

${\displaystyle \mathbf {B} (\mathbf {x} )={\frac {\mu _{0}}{4\pi }}\left[{\frac {3\mathbf {n} (\mathbf {n} \cdot \mathbf {m} )-\mathbf {m} }{|\mathbf {x} |^{3}}}+{\frac {8\pi }{3}}\mathbf {m} \delta (\mathbf {x} )\right].}$

Unlike the expressions in the previous section, this limit is correct for the internal field of the dipole.[4][11]

If a magnetic dipole is formed by taking a "north pole" and a "south pole", bringing them closer and closer together but keeping the product of magnetic pole-charge and distance constant, the limiting field is[4]

${\displaystyle \mathbf {H} (\mathbf {x} )={\frac {1}{4\pi }}\left[{\frac {3\mathbf {n} (\mathbf {n} \cdot \mathbf {m} )-\mathbf {m} }{|\mathbf {x} |^{3}}}-{\frac {4\pi }{3}}\mathbf {m} \delta (\mathbf {x} )\right].}$

These fields are related by B = μ0(H + M), where M(x) = mδ(x) is the "magnetization.

### Forces between two magnetic dipoles

As discussed earlier, the force exerted by a dipole loop with moment m1 on another with moment m2 is

${\displaystyle {\mathbf {F}}=\nabla \left({\mathbf {m}}_{2}\cdot {\mathbf {B}}_{1}\right),}$

where B1 is the magnetic field due to moment m1. The result of calculating the gradient is[12][13]

${\displaystyle {\mathbf {F}}({\mathbf {r}},{\mathbf {m}}_{1},{\mathbf {m}}_{2})={\frac {3\mu _{0}}{4\pi |{\mathbf {r}}|^{4}}}\left({\mathbf {m}}_{2}({\mathbf {m}}_{1}\cdot {\hat {\mathbf {r}}})+{\mathbf {m}}_{1}({\mathbf {m}}_{2}\cdot {\hat {\mathbf {r}}})+{\hat {\mathbf {r}}}({\mathbf {m}}_{1}\cdot {\mathbf {m}}_{2})-5{\hat {\mathbf {r}}}({\mathbf {m}}_{1}\cdot {\hat {\mathbf {r}}})({\mathbf {m}}_{2}\cdot {\hat {\mathbf {r}}})\right),}$

where is the unit vector pointing from magnet 1 to magnet 2 and r is the distance. An equivalent expression is[13]

${\displaystyle {\mathbf {F}}={\frac {3\mu _{0}}{4\pi |{\mathbf {r}}|^{4}}}\left(({\hat {\mathbf {r}}}\times {\mathbf {m}}_{1})\times {\mathbf {m}}_{2}+({\hat {\mathbf {r}}}\times {\mathbf {m}}_{2})\times {\mathbf {m}}_{1}-2{\hat {\mathbf {r}}}({\mathbf {m}}_{1}\cdot {\mathbf {m}}_{2})+5{\hat {\mathbf {r}}}(({\hat {\mathbf {r}}}\times {\mathbf {m}}_{1})\cdot ({\hat {\mathbf {r}}}\times {\mathbf {m}}_{2})\right).}$

The force acting on m1 is in the opposite direction.

The torque of magnet 1 on magnet 2 is

${\displaystyle {\boldsymbol {\tau }}={\mathbf {m}}_{2}\times {\mathbf {B}}_{1}.}$

## Examples of magnetic moments

### Two kinds of magnetic sources

Fundamentally, contributions to any system's magnetic moment may come from sources of two kinds: motion of "electric charges, such as "electric currents; and the "intrinsic magnetism of "elementary particles, such as the "electron.

Contributions due to the sources of the first kind can be calculated from knowing the distribution of all the electric currents (or, alternatively, of all the electric charges and their velocities) inside the system, by using the formulas below. On the other hand, the "magnitude of each elementary particle's intrinsic magnetic moment is a fixed number, often measured experimentally to a great precision. For example, any electron's magnetic moment is measured to be −9.284764×10−24 J/T.[14] The "direction of the magnetic moment of any elementary particle is entirely determined by the direction of its "spin, with the "negative value indicating that any electron's magnetic moment is antiparallel to its spin.

The net magnetic moment of any system is a "vector sum of contributions from one or both types of sources. For example, the magnetic moment of an atom of "hydrogen-1 (the lightest hydrogen isotope, consisting of a proton and an electron) is a vector sum of the following contributions:

1. the intrinsic moment of the electron,
2. the orbital motion of the electron around the proton,
3. the intrinsic moment of the proton.

Similarly, the magnetic moment of a "bar magnet is the sum of the contributing magnetic moments, which include the intrinsic and orbital magnetic moments of the unpaired "electrons of the magnet's material and the nuclear magnetic moments.

### Magnetic moment of an atom

For an atom, individual electron spins are added to get a total spin, and individual orbital angular momenta are added to get a total orbital angular momentum. These two then are added using "angular momentum coupling to get a total angular momentum. For an atom with no nuclear magnetic moment, the magnitude of the atomic dipole moment is then[15]

${\displaystyle m_{\text{Atom}}=g_{J}\mu _{\mathrm {B} }{\sqrt {j(j+1)}}}$

where j is the "total angular momentum quantum number, gJ is the "Landé g-factor, and μB is the "Bohr magneton. The component of this magnetic moment along the direction of the magnetic field is then[16]

${\displaystyle m_{\text{Atom}}(z)=-mg_{J}\mu _{\mathrm {B} }}$

where m is called the "magnetic quantum number or the equatorial quantum number, which can take on any of 2j + 1 values:[17]

${\displaystyle -j,-(j-1)\cdots 0\cdots +(j-1),+j}$.["dubious ]

The negative sign occurs because electrons have negative charge.

Due to the angular momentum, the dynamics of a magnetic dipole in a magnetic field differs from that of an electric dipole in an electric field. The field does exert a torque on the magnetic dipole tending to align it with the field. However, torque is proportional to rate of change of angular momentum, so "precession occurs: the direction of spin changes. This behavior is described by the "Landau–Lifshitz–Gilbert equation:[18][19]

${\displaystyle {\frac {1}{\gamma }}{\frac {{\rm {d}}\mathbf {m} }{{\rm {d}}t}}=\mathbf {m\times H_{\text{eff}}} -{\frac {\lambda }{\gamma m}}\mathbf {m} \times {\frac {{\rm {d}}\mathbf {m} }{{\rm {d}}t}}}$

where γ is the "gyromagnetic ratio, m is the magnetic moment, λ is the damping coefficient and Heff is the effective magnetic field (the external field plus any self-induced field). The first term describes precession of the moment about the effective field, while the second is a damping term related to dissipation of energy caused by interaction with the surroundings.

### Magnetic moment of an electron

"Electrons and many elementary particles also have intrinsic "magnetic moments, an explanation of which requires a quantum mechanical treatment and relates to the intrinsic "angular momentum of the particles as discussed in the article "Electron magnetic moment. It is these intrinsic magnetic moments that give rise to the macroscopic effects of "magnetism, and other phenomena, such as "electron paramagnetic resonance.

The magnetic moment of the electron is

${\displaystyle \mathbf {m} _{\text{S}}=-{\frac {g_{S}\mu _{\text{B}}\mathbf {S} }{\hbar }},}$

where μB is the "Bohr magneton, S is electron "spin, and the "g-factor gS is 2 according to "Dirac's theory, but due to "quantum electrodynamic effects it is slightly larger in reality: 2.00231930436. The deviation from 2 is known as the "anomalous magnetic dipole moment.

Again it is important to notice that m is a negative constant multiplied by the "spin, so the magnetic moment of the electron is antiparallel to the spin. This can be understood with the following classical picture: if we imagine that the spin angular momentum is created by the electron mass spinning around some axis, the electric current that this rotation creates circulates in the opposite direction, because of the negative charge of the electron; such current loops produce a magnetic moment which is antiparallel to the spin. Hence, for a positron (the anti-particle of the electron) the magnetic moment is parallel to its spin.

### Magnetic moment of a nucleus

The nuclear system is a complex physical system consisting of nucleons, i.e., "protons and "neutrons. The quantum mechanical properties of the nucleons include the spin among others. Since the electromagnetic moments of the nucleus depend on the spin of the individual nucleons, one can look at these properties with measurements of nuclear moments, and more specifically the nuclear magnetic dipole moment.

Most common nuclei exist in their "ground state, although nuclei of some "isotopes have long-lived "excited states. Each "energy state of a nucleus of a given isotope is characterized by a well-defined magnetic dipole moment, the magnitude of which is a fixed number, often measured experimentally to a great precision. This number is very sensitive to the individual contributions from nucleons, and a measurement or prediction of its value can reveal important information about the content of the nuclear wave function. There are several theoretical models that predict the value of the magnetic dipole moment and a number of experimental techniques aiming to carry out measurements in nuclei along the nuclear chart.

### Magnetic moment of a molecule

Any molecule has a well-defined magnitude of magnetic moment, which may depend on the molecule's "energy state. Typically, the overall magnetic moment of a molecule is a combination of the following contributions, in the order of their typical strength:

#### Examples of molecular magnetism

• The "dioxygen molecule, O2, exhibits strong "paramagnetism, due to unpaired spins of its outermost two electrons.
• The "carbon dioxide molecule, CO2, mostly exhibits "diamagnetism, a much weaker magnetic moment of the electron "orbitals that is proportional to the external magnetic field. The nuclear magnetism of a magnetic "isotope such as 13C or 17O will contribute to the molecule's magnetic moment.
• The "dihydrogen molecule, H2, in a weak (or zero) magnetic field exhibits nuclear magnetism, and can be in a "para- or an "ortho- nuclear spin configuration.
• Many transition metal complexes are magnetic. The spin-only formula is a good first approximation for high-spin complexes of first-row "transition metals.[20]["full citation needed]
Number of
unpaired
electrons
Spin-only
moment (mB)
1 1.73
2 2.83
3 3.87
4 4.90
5 5.92

### Elementary particles

In atomic and nuclear physics, the Greek symbol μ represents the "magnitude of the magnetic moment, often measured in Bohr magnetons or "nuclear magnetons, associated with the intrinsic spin of the particle and/or with the orbital motion of the particle in a system. Values of the intrinsic magnetic moments of some particles are given in the table below:

Intrinsic magnetic moments and spins of some elementary particles[21]
Particle Magnetic dipole moment
(10−27 "J·"T−1)
"Spin quantum number
("dimensionless)
"electron (e) −9284.764 1/2
"proton (H+) –0 014.106067 1/2
"neutron (n) 0 00−9.66236 1/2
"muon) 0 0−44.904478 1/2
"deuteron (2H+) –0 004.3307346 1
"triton (3H+) –0 015.046094 1/2
"helion (3He2+) 0 0−10.746174 1/2
"alpha particle (4He2+) –0 000 0

For relation between the notions of magnetic moment and magnetization see "magnetization.

## References and notes

1. ^ a b Cullity, B. D.; Graham, C. D. (2008). Introduction to Magnetic Materials (2nd ed.). "Wiley-IEEE Press. p. 103. "ISBN "0-471-47741-9.
2. ^ "Magnetic units". IEEE Magnetics. Retrieved 19 February 2016.
3. ^ Mohr, Peter J.; Newell, David B.; Taylor, Barry N. (21 Jul 2015). "CODATA Recommended Values of the Fundamental Physical Constants: 2014". Reviews of Modern Physics. 88. "arXiv: [physics.atom-ph]. "Bibcode:2016RvMP...88c5009M. "doi:10.1103/RevModPhys.88.035009.
4. "Brown, William Fuller, Jr. (1962). Magnetostatic Principles in Ferromagnetism. "North-Holland.
5. ^ "Jackson, John David (1975). "5.6 Magnetic fields of a Localized Current Distribution, Magnetic Moment". "Classical Electrodynamics. 2. "ISBN "0-471-43132-X.
6. ^ "Feynman, Richard P.; "Leighton, Robert B.; "Sands, Matthew (2006). "The Feynman Lectures on Physics. 2. "ISBN "0-8053-9045-6.
7. ^ Krey, Uwe; Owen, Anthony (2007). Basic Theoretical Physics. "Springer. pp. 151–152. "ISBN "3-540-36804-3.
8. ^ Buxton, Richard B. (2002). Introduction to functional magnetic resonance imaging. "Cambridge University Press. p. 136. "ISBN "0-521-58113-3.
9. ^ Boyer, Timothy H. (1988). "The Force on a Magnetic Dipole". "Am. J. Phys. 56 (8): 688–692. "Bibcode:1988AmJPh..56..688B. "doi:10.1119/1.15501.
10. ^ Du, Di (2014). "Micro-mutual-dipolar model for rapid calculation of forces between paramagnetic colloids". Physical Review E. 90 (3). "Bibcode:2014PhRvE..90c3310D. "doi:10.1103/physreve.90.033310.
11. ^ Jackson, John David (1975). Classical electrodynamics (2nd ed.). New York: Wiley. p. 184. "ISBN "0-471-43132-X.
12. ^ Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. "Academic Press. p. 140. "ISBN "0-12-269951-3.
13. ^ a b Yung, K. W.; Landecker, P. B.; Villani, D. D. (1998). "An Analytic Solution for the Force between Two Magnetic Dipoles" (PDF). Magn. Elec. Separation. 9: 39–52. "doi:10.1155/1998/79537. Retrieved November 24, 2012.
14. ^
15. ^ Tilley, R. J. D. (2004). Understanding Solids. "John Wiley and Sons. p. 368. "ISBN "0-470-85275-5.
16. ^ Tipler, Paul Allen; Llewellyn, Ralph A. (2002). Modern Physics (4th ed.). "Macmillan. p. 310. "ISBN "0-7167-4345-0.
17. ^ Crowther, J. A. (2007). Ions, Electrons and Ionizing Radiations (reprinted ed.). Rene Press. p. 277. "ISBN "1-4067-2039-9.
18. ^ Rice, Stuart Alan (2004). Advances in chemical physics. "Wiley. pp. 208ff. "ISBN "0-471-44528-2.
19. ^ Steiner, Marcus (2004). Micromagnetism and Electrical Resistance of Ferromagnetic Electrodes for Spin Injection Devices. Cuvillier Verlag. p. 6. "ISBN "3-86537-176-0.
20. ^ Figgis&Lewis, p. 406
21. ^ "Search results matching 'magnetic moment'". CODATA internationally recommended values of the Fundamental Physical Constants. National Institute of Standards and Technology. Retrieved 11 May 2012.
) ) WikipediaAudio is not affiliated with Wikipedia or the WikiMedia Foundation.