Powered by
Share this page on
Article provided by Wikipedia

Main article: "Hyperbolic geometric graph

Assuming that a network has an underlying hyperbolic geometry, one can use the framework of "spatial networks to generate scale-free degree distributions. This heterogeneous degree distribution then simply reflects the negative curvature and metric properties of the underlying hyperbolic geometry.[34]

Edge dual transformation to generate scale free graphs with desired properties[edit]

Starting with scale free graphs with low degree correlation and clustering coefficient, one can generate new graphs with much higher degree correlations and clustering coefficients by applying edge-dual transformation.[14]

Scale-free ideal network[edit]

In the context of "network theory a scale-free ideal network is a "random network with a "degree distribution following the "scale-free ideal gas "density distribution. These networks are able to reproduce city-size distributions and electoral results by unraveling the size distribution of social groups with information theory on complex networks when a competitive cluster growth process is applied to the network.[35][36] In models of scale-free ideal networks it is possible to demonstrate that "Dunbar's number is the cause of the phenomenon known as the '"six degrees of separation' .

See also[edit]


  1. ^ Onnela, J. -P.; Saramaki, J.; Hyvonen, J.; Szabo, G.; Lazer, D.; Kaski, K.; Kertesz, J.; Barabasi, A. -L. (2007). "Structure and tie strengths in mobile communication networks". Proceedings of the National Academy of Sciences. 104 (18): 7332–7336. "arXiv:physics/0610104Freely accessible. "Bibcode:2007PNAS..104.7332O. "doi:10.1073/pnas.0610245104. "PMC 1863470Freely accessible. "PMID 17456605. 
  2. ^ Choromański, K.; Matuszak, M.; MiȩKisz, J. (2013). "Scale-Free Graph with Preferential Attachment and Evolving Internal Vertex Structure". Journal of Statistical Physics. 151 (6): 1175–1183. "Bibcode:2013JSP...151.1175C. "doi:10.1007/s10955-013-0749-1. 
  3. ^ a b Clauset, Aaron; Cosma Rohilla Shalizi; M. E. J Newman (2007-06-07). "Power-law distributions in empirical data". SIAM Review. 51: 661–703. "arXiv:0706.1062Freely accessible. "Bibcode:2009SIAMR..51..661C. "doi:10.1137/070710111. 
  4. ^ "Barabási, Albert-László; Albert, Réka. (October 15, 1999). "Emergence of scaling in random networks". "Science. 286 (5439): 509–512. "arXiv:cond-mat/9910332Freely accessible. "Bibcode:1999Sci...286..509B. "doi:10.1126/science.286.5439.509. "MR 2091634. "PMID 10521342. 
  5. ^ Dorogovtsev, S.; Mendes, J.; Samukhin, A. (2000). "Structure of Growing Networks with Preferential Linking". Physical Review Letters. 85 (21): 4633–4636. "arXiv:cond-mat/0004434Freely accessible. "Bibcode:2000PhRvL..85.4633D. "doi:10.1103/PhysRevLett.85.4633. "PMID 11082614. 
  6. ^ "Bollobás, B.; Riordan, O.; Spencer, J.; Tusnády, G. (2001). "The degree sequence of a scale-free random graph process". Random Structures and Algorithms. 18 (3): 279–290. "doi:10.1002/rsa.1009. "MR 1824277. 
  7. ^ Dorogovtsev, S. N.; Mendes, J. F. F. (2002). "Evolution of networks". Advances in Physics. 51 (4): 1079–1187. "Bibcode:2002AdPhy..51.1079D. "doi:10.1080/00018730110112519. 
  8. ^ Willinger, Walter; David Alderson; John C. Doyle (May 2009). "Mathematics and the Internet: A Source of Enormous Confusion and Great Potential" (PDF). Notices of the AMS. American Mathematical Society. 56 (5): 586–599. Retrieved 2011-02-03. 
  9. ^ Cohen, Reoven; Erez, K.; ben-Avraham, D.; "Havlin, S. (2000). "Resilience of the Internet to Random Breakdowns". Physical Review Letters. 85: 4626–8. "arXiv:cond-mat/0007048Freely accessible. "Bibcode:2000PhRvL..85.4626C. "doi:10.1103/PhysRevLett.85.4626. 
  10. ^ Cohen, Reoven; Erez, K.; ben-Avraham, D.; "Havlin, S. (2001). "Breakdown of the Internet under Intentional Attack". Physical Review Letters. 86: 3682–5. "arXiv:cond-mat/0010251Freely accessible. "Bibcode:2001PhRvL..86.3682C. "doi:10.1103/PhysRevLett.86.3682. "PMID 11328053. 
  11. ^ Callaway, Duncan S.; Newman, M. E. J.; Strogatz, S. H.; Watts, D. J. (2000). "Network Robustness and Fragility: Percolation on Random Graphs". Physical Review Letters. 85: 5468–71. "arXiv:cond-mat/0007300Freely accessible. "Bibcode:2000PhRvL..85.5468C. "doi:10.1103/PhysRevLett.85.5468. 
  12. ^ Cohen, Reuven; Erez, Keren; ben-Avraham, Daniel; Havlin, Shlomo (2000). "Resilience of the Internet to Random Breakdowns". Physical Review Letters. 85 (21): 4626–4628. "Bibcode:2000PhRvL..85.4626C. "doi:10.1103/PhysRevLett.85.4626. 
  13. ^ Cohen, Reuven; Havlin, Shlomo (2003). "Scale-Free Networks Are Ultrasmall". Physical Review Letters. 90 (5): 058701. "doi:10.1103/PhysRevLett.90.058701. "PMID 12633404. 
  14. ^ a b Ramezanpour, A.; Karimipour, V.; Mashaghi, A. (2003). "Generating correlated networks from uncorrelated ones". Phys. Rev. E. 67: 046107. "doi:10.1103/PhysRevE.67.046107. 
  15. ^ De Masi, Giulia; et. al (2006). "Fitness model for the Italian interbank money market". Physical Review E. 74: 066112. "doi:10.1103/PhysRevE.74.066112. 
  16. ^ Soramäki, Kimmo; et. al (2007). "The topology of interbank payment flows". Physica A: Statistical Mechanics and its Applications. 379 (1): 317–333. "Bibcode:2007PhyA..379..317S. "doi:10.1016/j.physa.2006.11.093. 
  17. ^ Steyvers, Mark; Joshua B. Tenenbaum (2005). "The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth". Cognitive Science. 29 (1): 41–78. "doi:10.1207/s15516709cog2901_3. 
  18. ^ Fratini, Michela, Poccia, Nicola, Ricci, Alessandro, Campi, Gaetano, Burghammer, Manfred, Aeppli, Gabriel Bianconi, Antonio (2010). "Scale-free structural organization of oxygen interstitials in La2CuO4+y". Nature. 466 (7308): 841–4. "arXiv:1008.2015Freely accessible. "Bibcode:2010Natur.466..841F. "doi:10.1038/nature09260. "PMID 20703301. 
  19. ^ Poccia, Nicola, Ricci, Alessandro, Campi, Gaetano, Fratini, Michela, Puri, Alessandro, Di Gioacchino, Daniele, Marcelli, Augusto, Reynolds, Michael, Burghammer, Manfred, Saini, Naurang L., Aeppli, Gabriel Bianconi, Antonio, (2012). "Optimum inhomogeneity of local lattice distortions in La2CuO4+y". PNAS. 109 (39): 15685–15690. "arXiv:1208.0101Freely accessible. "doi:10.1073/pnas.1208492109. 
  20. ^ M. K. Hassan, M. Z. Hassan and N. I. Pavel, “Scale-free network topology and multifractality in a weighted planar stochastic lattice” New Journal of Physics 12 093045 ( 2010) doi:10.1088/1367-263/12/9/093045.
  21. ^ M. K. Hassan, M. Z. Hassan and N. I. Pavel, Scale-free coordination number disorder and multifractal size disorder in weighted planar stochastic lattice, J. Phys: Conf. Ser, 297 012010 (2011).
  22. ^ Kumar, Ravi; Raghavan, Prabhakar (2000). Stochastic Models for the Web Graph (PDF). Foundations of Computer Science, 41st Annual Symposium on. pp. 57–65. "doi:10.1109/SFCS.2000.892065. 
  23. ^ a b Dangalchev Ch., Generation models for scale-free networks, Physica A 338, 659 (2004).
  24. ^ Barabási, A.-L. and R. Albert, Science 286, 509 (1999).
  25. ^ R. Albert, and A.L. Barabási, Phys. Rev. Lett. 85, 5234(2000).
  26. ^ S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhim, cond-mat/0011115.
  27. ^ a b P.L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000).
  28. ^ B. Tadic, Physica A 293, 273(2001).
  29. ^ S. Bomholdt and H. Ebel, cond-mat/0008465; H.A. Simon, Bimetrika 42, 425(1955).
  30. ^ Hassan, M. K.; Islam, Liana; Arefinul Haque, Syed (2017). "Degree distribution, rank-size distribution, and leadership persistence in mediation-driven attachment networks". Physica A. 469: 23–30. "doi:10.1016/j.physa.2016.11.001. 
  31. ^ Ravasz, E.; Barabási (2003). "Hierarchical organization in complex networks". Phys. Rev. E. 67: 026112. "doi:10.1103/physreve.67.026112. 
  32. ^ Caldarelli, G.; et al. (2002). "Scale-free networks from varying vertex intrinsic fitness". Phys. Rev. Lett. 89: 258702. "doi:10.1103/physrevlett.89.258702. "PMID 12484927. 
  33. ^ Garlaschelli, D.; et al. (2004). "Fitness-Dependent Topological Properties of the World Trade Web". Phys. Rev. Lett. 93: 188701. "doi:10.1103/physrevlett.93.188701. 
  34. ^ Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Vahdat, Amin; Boguñá, Marián. "Hyperbolic geometry of complex networks". Physical Review E. 82 (3). "doi:10.1103/PhysRevE.82.036106. 
  35. ^ A. Hernando; D. Villuendas; C. Vesperinas; M. Abad; A. Plastino (2009). "Unravelling the size distribution of social groups with information theory on complex networks". "arXiv:0905.3704Freely accessible [physics.soc-ph]. , submitted to European Physics Journal B
  36. ^ André A. Moreira; Demétrius R. Paula; Raimundo N. Costa Filho; José S. Andrade, Jr. (2006). "Competitive cluster growth in complex networks". "arXiv:cond-mat/0603272Freely accessible [cond-mat.dis-nn]. 

Further reading[edit]

) )